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An approximate solution is proposed for the radiation transport equations in a 
dissipating medium which is that the radiation intensity experiencing two and 
more scattering acts is found in the transport approximation. The approxima- 
tion developed possesses high accuracy and permits obtaining analytic expres- 
sions in those cases where numerical computations had been used earlier. 

As is known [1-3], investigations of radiation transport in two-phase media are of 
great theoretical and practical value for many divisions of physics and its engineering 
applications. The solution of the transport equation in the general case is associated 
with great mathematical difficulties, especially when it is required to take account of 
anisotropy of scattering, the reflective properties of the boundary surfaces, the geometry 
of the medium under investigation, etc. In this paper, the solution of the radiation trans- 
port equation is expressed in terms of the intensity of single scattering and the intensity 
of second and higher multiplicity scattering. The correction to the multiplicity of scat- 
tering is described by a function determined by the method developed in [4-6]. Problems 
of radiation propagation in semiinfinite and finite media with isotropic scattering, a 
semiinfinite layer with anisotropic Scattering, a planar medium with known reflection pro- 
perties of the boundary surfaces, and also the case of conservative scattering will be 
examined below. A comparison with the results of numerical computations and analytic solu- 
tions will indicate the high accuracy of the method proposed. 

Let us consider the propagation of radiation in a homogeneous plane layer with a given 
distribution of internal radiation sources for an arbitrary scattering index: 

! 

d~ ~ -  p(p,  p ' ) J ( %  ~')d~'+A(~)-ks (1) 

--1 

Here dT = (~+o)dx is the elementary optical thickness of the layer, and the function A(T) + 
%B(T) characterizes the internal radiation source function in general form. Thus, upon 
compliance with the local thermodynamic equilibrium condition 

A(T) + kB~x) : (1 --%) Bv IT (~)l, (2) 

where  B~[T(T) ]  i s  t he  i n t e n s i t y  o f  P l a n c k  r a d i a t i o n  o f  f r e q u e n c y  ~ a t  a t e m p e r a t u r e  T = T (T) .  
The b o u n d a r y  c o n d i t i o n s  f o r  (1) t a k e  a c c o u n t  o f  t h e  p r e s e n c e  o f  e x t e r n a l  r a d i a t i o n  p a s s i n g  
t h r o u g h  t h e  b o u n d a r y  s u r f a c e s  and the  r a d i a t i o n  t h e y  r e f l e c t  t h a t  emerges  f rom t h e  medium 

l 

0 
(3) 

1 

(~o, - -  ~) = Jo~ ~-- ~) + ~1 f y~(~, ~,) j (~o, + ~') ~'d~'. 
0 

The r e f l e c t i v i t i e s  o f  t he  b o u n d a r y  s u r f a c e s  Y i ( ~ ,  ~ ' )  ( i  = 1,  2) a r e  a n a l o g o u s l y  i n t r o d u c e d  
[ 1 ] .  In  t h e  d i f f u s e  r e f l e c t i o n  c a s e ,  t h e s e  q u a n t i t i e s  e q u a l  
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while for Fresnel (or specular) 

Y~(F, I f ) = 2 A i ~ ,  
reflection 

(4) 

(5) 

To solve (I) under the boundary conditions (3) we turn to successive approximations, 
i . e . ,  we seek the s o l u t i o n  in  the  form [1, 7] 

j (% ~) = ~ ~nj(,o (% ~), (6) 
n~O 

where J(n)(T, ~) is the radiation intensity scattered n times. Substituting (6) into (i), 
the equat ion  and boundary cond i t i ons  to de termine  J (n ) (T ,  l~)are e a s i l y  w r i t t e n :  

dJ (~ ('c, ~) + j(o) (z, ~) = A (r), 
~ dT 

1 

j(o) (0, @ 9) ---- Jo, (@ V)@ l S y~ (V, ~t') j(o) (0, -- ~t') ~t'd~t', (7) 

0 

1 

rio) (%, _ ~) = Jo~ (-- ~) @ ~1 S y~ (9' ~,)j(o) (%, + ~,) la,d~, ' 
0 

1 

dJ~ "c, ~) @gO)(% ~) 11 I" j(o) B(~), [~ dT =--~- p(~t, ~t') (~, ~t')d~t'-]- (8) 
Z~ 

1 

dJ(m)(% ~) --[-J(m)(" L ~t)=-~- p(l~, ~t') J(m-l)(r ' ~ ')d~t '(m=2, 3 . . . .  ). (9) 
F dr 

- -1  

The boundary conditions for (8) and (9) are identical in form 

l 

0 

Y~ (~, ~,) j(m) (0, --  ~'] ~'d~', 

1 

1 j '  

0 

Y2(~, ~')J(m)(To, ~- F') ~t'd]%. 

According to (7)-(10), to determine the functions 

w e  

ffr, ~ )=J (~ ,  D)__ j(0)(% ~)__%j(1)(r ' ~ ) = ~  ~mj(m)(r, D) 
m ~ 2  

obta in  the fo l lowing  equa t ion :  
1 

df (r, ~) . + f (~, ~) = ~ S dr - 2 -  P (~' ~') f (r, ~') d~'+ a (-c, ~), 
- - l  

where 

(10) 

(11) 

(12) 

I ~z j. 
G(T, #)- -  2 P(~' ~') JO)(T' ~') d~'. (13) 

- - I  

The boundary cond i t i ons  for  t h i s  equa t ion  are analogous to (10).  

The function f(T, ~) introduced characterizes the contribution of second and higher 
multiplicity scattering. According to (12) its magnitude is determined by G(T, H), i.e., 
the intensity of singly scattered radiation. This function permits direct estimation of the 
role of multiple scattering processes: 
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TABLE I. Comparison of the Exact (~) [i] and Computed 
Values (@c) from (9) for the Ambartsumyan Function ~(~) 

0,4 0,5 0.6 0,7 0,8 / 0,9 0 ,95  

[ 

0 1,O0 1,O0 ,00 1,00 1,OOjl,OOl,OOl,OO[1.OOll,O0]l,O01,O01,OOIl,O0 
0,i 1,06 1,05 ,07 1,07 1,0911,091,11 1,1111,14t1,13]I,17!1,16 1.19t1,18 
0,2 1,09 1,08 ,ll l , l l  1,15]1,141,181,1711,23[1,22]1,29!1,281.34tI,32 

1,19[1,18 1,23tl,30]1,29] 1,39] 1,381.4til 1,44 0,3 1,11 1,11 ,14 1,141,2211,211,24 0 , 4 1 , 1 3 1 , 1 2  ,171,16 1,281,2711,36[1,35]1,48il,461.5711,55 
0,5 1,14 1,14 ,19 1,18 1,2511,241,321,3111,41[1,40]1,5611,54111' 1.67[1,66 
0,6 1,15 1,15 ,20 1,201,2711,261,351,341,461,451,631,611,7611,75 
0,7 1,16 1,16 ,22 1,22 1,2911,281,381,37[1,5011,49tl,6911,681,8511,84 
0,8 1,17 1,17 ,23 1,23 1,3111,301,401,4011,5411 5311,751,741,93[1,93 

1,4211,57/I 5611,801,802.0112,01 1,321,32 ' ' 0,9 1,18 1,18 ,24 1,24 1,341,331,42 
1,O 1,18 1,18 ,25 1 , 2 5  1,4.41,44]1.60[1,5911,85!1,852.0812,08 

I 

A = A (T, ~x) = ~,j(1} (T, ~) ' (14) 

and the solution of the initial equation (i) is itself written in terms of the magnitude of 
the single scattered radiation intensity: 

j(~, ~ ) =  j(o) (~, ~t) +~,(1 q- A)J(1)(~, ~t). (15) 

We call the function f(T, ~) the multiple scattering function. 

Photons experiencing two and more acts of scattering produce a more-or-less uniform 
angular distribution of the intensity in the medium. In this case, as is shown in [4-7], 
the transport approximation can be used, i.e., the scattering index is represented in the 
form 

pox, ix') = a@ 2(1 - - a )  6(/X--l~' ). (16) 

Then (12) takes the form 
l 

df q ~) +f(t ,  ~)= t t" dt ~ ,J f(t, ~')d~t'q-~O(t, ~). (17) 
- - I  

Here 

~= 1 ; l =  a~ ; d t = - - I  dT. 
1 -- % (1 -- a) 1 -- % (1 -- a) [~ ( 1 8 )  

In the case a =I, i.e., when the index is spherical, B =I, I =%, t =T. 
use the method developed in [4-6]. Let us introduce the function 

I ! 

fi (t) = ~ f (t, + ~) d~, f~ (t) = ~ t (t, - ~) d~. 
o o 

In the Schwarzschild--Schuster 
these functions 

where 

To solve (17), we 

(19) 

approximation we have the following system of equations for 

1 ah(t)  + f ~ ( t ) =  l 
2 d~---- 2 [f~ (t) + f2 (t)l + g,  (t), 

1 dh (t) + h (t) t 
2 d ~  = ~ [f~ (t) q- f~ (/)] -}- g2 (t), 

(2o) 

1 ! 

e,  (t) = ~ .t" a (t, + ~) d~, e~ (t) = ~ .[ O (t, - -  ~) d~. 
0 0 (21) 

Using the notation 

f (t) = fl (t) + f~ (t), //(t) = f, (t) -- s (0, (22) 
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Fig. 1. Dependence 
ing on the angle of 
k=0.99; i) ~o =i.0~ 
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of the correction to multiple scatter- 
observation: a) %=0.5; b) %=0.9; c) 
2) 0.5; 3) 0.3. 

we find 
d2l (t) 

dt  2 
kZl (t) = - -  2 h (t), H (t) --  

1 d1(O 
2 dt . 

+ g, (0 - g~ (t). 

Here 

k z = 4 (1 - -  l), h (t) = 2 [g~ (t) -k g2 (t)] - -  

The solutions of (23) are 

According to 

where 

k H(t)= 

where 

d 
[g, (t) -- g~ (0]. 

dt 

I (t) = Ate -h  (to-t) -k Afe -kt  + alP1 (t) -k Cz (t), 

[ _ A i e - h  (to-O + Aze-ht _ cb~ (t) + ~2 (/)] + g~(l) - -  g~(t),  

to t" 

1" l f h ( t ' ) e - h ( t - t ' ) d t ' "  1 h ( t ' ) e - k ( t ' - t ) d t ' ;  ~ (t) : ----if- , r  (t) = .o-7-. 
t 0 

( 2 2 ) ,  e x p r e s s i o n s  f o r  f ~ ( t )  and f f ( t )  f o l l o w  

1 
f l  ( t )  ~- oclAie - h  (t~ "~- afA2 e-kt  + ~t(J~l ( t)  -~  CZ2~ 2 ( t)  -{- 

1 
f~ (t) = afAie -h  (t o-t) .-]- aiA~e-kt -k a f ~ i  (t) -~- at(J92 (/) 

-- [a  (t) -- g~ (t)], 

[g, (t) -- g~ (t)l, 

l 1 " ' = T ( 2 - - k ) ' = ~ -  u (2+k) .  

Integrating the relationship (i0) for f(t, ~) with respect to V, we find the 
conditions for the functions f~(t) and ff(t): 

ft  (0) = Pif2 (O)andf2 (to) = P2ft (tO). 

Some effective reflectivities of the boundary surfaces are introduced here: 

(23) 

(24) 

(25) 

(26) 

(27) 

boundary 

(28) 

I 1 

- - ~  t' yi (,, ~') f (o, - ,') ,'d~' 
0 0 

I 

S [ (o, - -  V) d~ 
0 
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1 1 

f (to, + 
0 0 

P 2  ~ 1 

.I f (t~ + !~) d9 
0 

Conditions (28) permit determination of the constants Az and Az 

Jt~ = -- M~ (1 -- o~R) - -  M~ (R - -  02) e -ht~ 
(l -- O~R) (I -- PzR)-- (R -- p,) (R -- O~) e-2kt~ ' 

A~ = - -  M~ (1 - -  p2R) - -  M~ (R - -  O0 e - ~ ~  
(1 - -  p,R) (1 - -  pzR) - -  (R - -  p,) (R - -  P2) e -2~t~ ' 

where 

1 (1 + R) (1 + p O [ g t ( O ) - - & ( O ) ] ;  M~ = ( R - -  PO r + - ~ -  

1 (1 + R) ( l  + 9~) [& (to)-- g2 (to)]; M= = ( R - -  P-,) qh 

to to 

1 h (t') e -~t" dr'; r  = q~2 (to) = --ff- r  = r  = - 7 -  
0 0 

h (t') e -h r ,) dt'; 

R _ _ _  
% 2 - -  te 1 - - ] / 1  1 
a2 2 + k 1 + V ~ 1 - -  l 

(29)  

(30) 

(31) 

Let us note that the quantity R is the reflectivity of a semiinfinite scattering layer [4]. 

The expressions (26) are of definite interest for investigation since they are multiple 
scattering functions averaged over the positive and negative hemispheres. Nevertheless, we 
turn to determining the function f(t, Z) itself. Substituting the expression obtained for 
I(t) into (17) instead of the integral, we find 

dr(t, ~) + f ( t ,  ~ )=  t dt ~ [A~e-h (t'-t) + A~e-ht + r (t) + qb2 (t)] + ~G (t' ~)" (32) 

Hence, the desired solution is determined by the following expressions 
t to--t 

t ( t ,  + ~ ) = [ ( 0 ,  +~t) e ~' +F~(  t, ~t), f ( t ,  - -~ )  = [ ( t o , - - ~ ) e  ~" +F2( t ,  ~t), 

t t 
- -hto--  - -  e - k t -  e 

Pt (t, Ix) = IAi2 e-k (t~ -]-k~t-- e u + ~lA2 l--le~t 

t lkZ~ z 
/ [r (t) - -  qhe ~' l ~ ,  (t, ~) + Q, (t, la); + 

+ 2 (1 - -k~ t )  2(1 +k~x)  1--k2~x 2 
to--t to--t  

P~ (t, Ix) = IAt2 e-~ (t~ --k~-- e ~ -t IA22 e-ht --1 e-kto-+ k~ ~ q- 2 (1 - -  k / x ) l ~ t  (t) 

t o - - t  . 
l 

+ 2 ( l + k o )  [ r  ~ ] 
lk2~ z 

l__kZ~Z ~ ( t ,  ~ )q -Q~( t ,  ~); 

(33) 

(34) 

(35) 

(36) 

t 1 ~ t-t" dt' . 
~ l ( t ,  I-t)= k2 h( t ' )e  ~ 

0 

where 

to 

1 ff t ' - t  dr' ~ 2 ( t ,  ~ ) =  k a h ( t ' ) e  ~ - - ;  

t 

1362 



! t-t" dt' 
Q~(t, V) = [3 j G(t', ~)e ~ 

0 

to t'-t - . ,  
Q2(t, ~) = ~ ff O(t', - -  V)e ~ a~ 

t 

(37) 

The quantities f(0, +~) and f(to, --D) in (33) are easily determined when definite 
laws of boundary surface reflection are given. Thus, in the diffuse reflection case, we 
find according to (4) 

I 

[(0, + p) = 2A~ ; [(0, - -~ ' )  ~'dp'_~A~[~(O), 
0 

1 

[ ( to ,  - -  . )  = 2 A~ .! [ (to, + ~') ~ t 'dv '~  A.d~ (to), 
0 

where f1(to) and f2(0) are determined by (26). 
obtain the exact expressions 

rl (~) 
f ( 0 ,  + ~) = 2to 

1 - -  r t  (tt) r2 (I~U e 

[(to - - p ) =  rz(p) [Fi(to v ) + r ~ ( v ) e  
' 2to 

1 - -  ri (~t) r2 (~) e 

If theboundary surfaces reflect the radiation by different laws, then 

[ (0, + ~) =- A~f2 (0), [ (to, - -  V) = r2 (9) [Fi (to, V) + Ad~ (o) e 

For Fresnel (or specular) reflection we 

to 

[F2(O, v ) + r z ( ~ ) e  ~' F~(to, V)I, 

to 

~ G ( o ,  ~)1. 

to 
~] 

o r  

~o 

f(0, + p) = r i O ) [ G ( 0 ,  p) + &h(to)e  ~ ], f i fo,  - -~)  =Addto). 

(38) 

(39) 

(40a) 

(40b 

Naturally, if the boundary surfaces reflect no radiation (or almost none) the quantities 
under consideration vanish. 

Let us turn to the problem of diffuse reflection of radiation from a semiinfinite 
medium under isotropic scattering. In this case, according to (33) the multiple scattering 
function takes the form 

o r  

_ IA~ 
fo = [(0, - -  FJlt.-= 2(1 + k~) 

f t" dr' 
1 - -  k2~ 2 . 

0 

l ; h (t') e -kt" dr' 
+ 2 k ( 1 - - k ~ )  

0 
00 

j ' ~" dr' + ~ G (t', ~) e 

0 

t" dr' 
fo=[~ G(t', - - ~ ) e  

• ( h (t') e -kt" dt ' - -  
J 1 - -  kZ~t z 
0 

+ 1 - -  kv. 1 + k~ 

f t" dr' h (t') e 
�9 
0 

(41) 

For specific computations of the integrals in the last expression, the quantity J(1)(t, 
p) must be known, and the condition for isotropy of the scattering must be used. The 
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problem of determining J(~)(t, V) for a semiinfinite layer is quite simple. According to 
(7) and (8), it is easy to obtain that upon incidence of external radiation of intensity 
Jo at an angle ~o = arccos~o to the normal of the layer 

j(o) (.~, +/~) _-- Jo6 (~ - -  ,uo) e t~ , j(o} (% __ ,u) ---- 0, 

~oJop (P, ~o) (e " '  " 

jo) (% + ~ )=  4 ~ o - - ~ )  - - - e  ), 

T 

jo)(.r, __~)= ~oJoP(--~, Po) (e t~~ 
4 (~t o + ~) 

4 (~o + 1 ~) 

Using the  c o n d i t i o n  of  s c a t t e r i n g  i s o t r o p y ,  we f i n d  
1 -j- 

6(t, t O -  2 
- - I  

Then 

"~o ~To ~ ' ~  

T 

e ~o (42) 

J(~ ) (~, ~t) d~t = G (z), g~ (t) = g~ (t) = G (~), 

h ( t )  = 4"G (~). 

f o =  1--k2p~ 2 l - } - ~  1--kp~ l + k p ,  (43) 

where 

Io (k) = k .~ G ('r') e -~T' d'~'. (44) 
0 

Substituting the explicit expression for the function G(T) in (44), we obtain 

lo(k)_= ;L 2 kl%Jo [ 1 + ~ o  1 ] 
- - ~  1 + kgo &to In P.o ~- --if-- In (1 -~-�9 k) . (44a) 

Therefore, the solution of the problem of diffuse reflection of radiation from a semi- 
infinite medium can be written in the form 

J (0, - -  p~) = ;L (I  + A) j(1) (0, - -  ~s (45) 

where )~ 1 - - 4  t~2 ( l+po I+~) 

A = A (p,, ~xo) = 2 1 - -  k2~ 2 ~o In ~ t X o  + ~ In - - ~  + 

)~2(~~ P') ( 1 R [ l + p ~  1 1 
+ k ( l + k ~ o )  1 - - k ~  l + k ~  ~ o l n ' ~ +  ~ l n ( l + k )  �9 ~o (46) 

The coefficient of diffuse reflection for a semiinfinite medium is determined by the 
expression : 

J(0, - -  ~) ~,(1 + A) 
P(~, P~o) -= -- (47) 

Jo~o 4 (~o + }t) 

We have obtained the solution of the problem in the form (45) or (47) in terms of the 
single scattering approximation. The function fo (or A) permits a numerical estimation of 
the contribution of multiple scattering to the total intensity of scattered radiation as a 
function of the optical properties of the medium and the conditions of performing the experi- 
ment. Let us note that the limits of applicability of the single scattering approximation 
are determined by the quantity A. 

The error in the method proposed for this problem is established sufficiently simply 
since the exact solution is already known [i] 

P (~, ~o) = ~ ~(~o) ~(~) , (48)  
4 ~ o + ~  
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where ~ (~) is the Ambartsumyan function defined by the integral expression 
! 

k S ~(V) r (IX) = 1 + --f- ~tqD (~) dix'. 
~ +  IX' 

o 

On the  o t h e r  hand,  s e t t i n g  > =~o i n  (47) and (48) ,  we have 
2 ~Ph (~t) = 1 -{- A (IX, ~t) or (Pc (Ix) ---- ~/1 -~- A o [IX), (49) 

Ao(~t) A(~t, V] %~t 1 - - 4  IX 2 l + v t  2X2Vt ( 1 R ) [  l + ~ t  1 ] = ---- In ~- I x l n - - +  l n ( l + k )  . 
1 - -  k2ix 2 ~ k (1 + kix) 1 - -  k ~  1 + kilt IX k 

(50) 

The data for computing ~n(~) and the exact values of ~(~) are presented in the table 
for different values of the probability of survival of a quantum k. Analysis of these data 
shows that the error in the method proposed is on the order of 1% in the determination of 
the Ambartsumyan function and therefore in the solution of the transport equation. 

The dependence of the correction for multiple scattering A(U, ~o) on the angle of obser- 
vation is represented in the figure for different values of the survival probability of a 
quantum % and angle of external radiation incidence Co. Analysis of the dependences presen- 
ted shows that for strongly scattering media (%~0.9) in a broad range of variation of the 
angle of observation (~ 0.2-1.0), the quantity A(~, ~o) depends linearly on ~. The angular 
coefficient of the lines A = c~ grows with the growth of both % and ~o. Let us note that 
according to (15) the domain of applicability of the single scattering approximation is 
determined by the value 

E = ' t ( 0 '  - -~)- - ;~ , ;m(0,  --IX) _ - - - - a  . (51) 
J(0, - - ~ )  1 +A 

Thus, for > = ~o = i the quantity E equals 
0.4 0,5 0,6 0 , 7 : 0 , 8 ,  0.9 0,95 0,975 0 .99 0,995 

E.100 % 28,4 35 .9  4 3 . 7  51.9 60,6 70,7 7 7 . 0  80,9 84,1  85.6 

For strongly dissipating media (X = i -- 62, 6 << i) .... its approximate representation 

2(1 + p S ) ( 1  + Ix ln 1 ~ )  (52) 
h o ( ~ t ) ~ ( 1 - - 4 ~ = ) l n l + P ~ ,  kt + i i  +6)(1 +2~t8) 

can be used in place of (50). 

In conclusion, let us note that the case when ~*i/k must be examined specially. As 
is easy to show 

~'-J--~ (k + 2)doln(! + k). (53) 

It is later planned to analyze the accuracy of the proposed method in examining a 
finite layer and taking account of the effect of anisotropy, as well as to show the possi- 
bility of taking account of the reflective properties of the boundary surfaces for important 
practical cases. 

NOTATION 

J(T, ~), radiation intensity at the point T and the direction 8 =arccos D; P(~, ~'), 
scattering index in a volume element; ~, absorption coefficient; ~, scattering coefficient; 
X =~/(~+~), probability of survival of a quantum; T, optical depth; By(T), Planck function; 
T, temperature; Yi(~, ~'), reflectivity of the boundary i; f(~, ~), radiation intensity 
scattered two and more times; ~, twice the hemispherical backscattered fraction. 

i. 

2. 
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ALGORITHM OF THE ZONAL SOLUTION OF 

RADIATION--CONDUCTION HEAT-TRANSFER PROBLEMS 

V. V. Volkov, V. G. Lisienko, 
and A. L. Goncharov 

UDC 536.3 

A numerical method is proposed to compute the stationary radiation--conduction 
heat transfer in semitransparent materials on the basis of a zonal approach. 

The development of methods to compute the radiation--conduction heat transfer [i] is 
of great value for many thermal-engineering applications. The use of high-speed electronic 
computers with sufficient mathematical support permits the execution of a penetrating com- 
putational theoretical analysis of this kind of heat transfer in absorbing inhomogeneous 
media with a detailed accounting of the frequency--temperature dependence of the optical 
characteristics in both the bulk and on the boundaries of the radiating system [2-5]. Great 
attention is paid to overcoming the mathematical difficulties in solving radiation--conduc- 
tion heat-transfer (RCT) problems in the presence of semiopacity of the boundary surfaces 
[4, 5], as well as moving phase interfaces [6]. 

It should be noted, however, that the high level of detail achieved in computations in 
[2-6] is as yet realized for the one-dimensional plane-parallel case. Nevertheless, the 
need to produce computational methods permitting the analysis of RCT in two- and three-dimen- 
sional systems of different configuration is already overdue. Hence, by taking into account 
the difficulties of realizing exact formulations of complex heat-transfer problems for 
arbitrary volume geometry conditions, the prospects of approximate zonal methods [l]based on 
the approximation of the initial radiation integral equations by a system of algebraic equa- 
tions [7] are noted. ~anwhile, the inadequately extensive utilization of these methods in 
the theory of complex heat transfer is indicated in [i]. An analysis of foreign investiga- 
tions of the application of approximate methods of solving complex heat-transfer problems 
in bulk systems is presented in [8], and reduces to recommendations to utilize the so-called 
method of generalized angular coefficients in the RCT domain in [8]. The expediency of 
using the statistical testing (Monte Carlo) method, whose efficiency is demonstrated in a 
number of examples, is indicated in [8] for the determination of the generalized angular 
coefficients as well as the radiation exchange coefficients for the solution of different 
complex heat-transfer problems. In particular, the simplicity and phzsical nature of the 
solution of problems with complex bulk geometries of the radiating systems by the method 
mentioned are noted. The prospects of utilizing the Monte Carlo method to model radiation 
transport processes are also noted in [i]. 

The results of trying out the algorithm for the approximate solution of RCT problems on 
the basis of a zonal approach [7, 9] and the utilization of the Monte Carlo method to deter- 
mine the radiation exchange coefficients [i0, ii], as well as a finite-difference scheme to 
take account of heat transfer by heat conduction [12] are presented in this paper. The 
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